Space radiation damage rescued by inhibition of key spaceflight associated miRNAs
Cellular & Tissue Engineering
space, radiation, damage, rescued, inhibition, spaceflight, associated, mirnas, radiation, damage, increased, study, examining, space, rescued, inhibition, cosmic, exposure, radiation, space, damage, effective, study, examining, rescued, inhibition, exposure, cosmic
space, radiation, damage, rescued, inhibition, spaceflight, associated, mirnas
radiation, space, damage, effective, study, examining, rescued, inhibition, exposure, cosmic
radiation, damage, increased, study, examining, space, rescued, inhibition, cosmic, exposure
Study examining space radiation damage rescued by inhibition of key. Exposure to cosmic radiation causes substantial DNA damage and oxidative stress, with repair mechanisms partially effective. Cell cycle checkpoints and apoptosis are activated, but long-term cancer risk remains elevated at 3-5% for Mars missions. Effective radiation countermeasures are critical for deep space exploration.
Study examining space radiation damage rescued by inhibition of key. Cosmic radiation exposure caused significant DNA damage with increased double-strand breaks. Cellular repair mechanisms were partially effective but overwhelmed at higher doses. Oxidative stress markers were elevated substantially. Cell cycle checkpoints showed prolonged activation. Apoptosis rates increased dose-dependently. Long-term cancer risk estimates ranged from 3-5% for Mars missions.