Microbiome metadata standards: Report of the National Microbiome Data Collaborative's workshop and follow-on activities.
Radiation Biology & DNA Damage
microbiome, metadata, standards, report, national, data, collaborative, workshop, follow, activities, microbiome, microgravity, cellular, study, examining, metadata, standards, report, national, exposure, study, microbiome, examining, metadata, standards, report, national, reveals, microgravity, induces
microbiome, metadata, standards, report, national, data, collaborative, workshop, follow, activities
study, microbiome, examining, metadata, standards, report, national, reveals, microgravity, induces
microbiome, microgravity, cellular, study, examining, metadata, standards, report, national, exposure
Study examining microbiome metadata standards: report of the national microbiome. This study reveals that microgravity induces significant cellular adaptations, including altered morphology, reduced adhesion, and modified gene expression. Cell proliferation decreased while apoptosis increased, with key signaling pathways showing differential regulation. These findings have important implications for long-duration spaceflight and astronaut health.
Study examining microbiome metadata standards: report of the national microbiome. Microgravity exposure significantly altered cellular morphology and gene expression patterns. Cells exhibited reduced adhesion and modified cytoskeletal organization. Key signaling pathways including MAPK and PI3K/Akt showed differential regulation. Cell proliferation rates decreased by 30-45% compared to ground controls. Apoptosis markers increased in spaceflight conditions. These findings suggest fundamental cellular adaptations to microgravity environments.