Orchestrating rapid long-distance signaling in plants with Ca2+ , ROS, and electrical signals
Radiation Biology & DNA Damage
orchestrating, rapid, long, distance, signaling, plants, electrical, signals, growth, study, examining, orchestrating, rapid, long, distance, signaling, plants, plant, long, study, examining, orchestrating, rapid, distance, signaling, plants, microgravity, profoundly
orchestrating, rapid, long, distance, signaling, plants, electrical, signals
long, study, examining, orchestrating, rapid, distance, signaling, plants, microgravity, profoundly
growth, study, examining, orchestrating, rapid, long, distance, signaling, plants, plant
Study examining orchestrating rapid long-distance signaling in plants with ca2+. Microgravity profoundly affects plant biology, disrupting normal gravitropic responses while enhancing phototropism. Gene expression, cell wall structure, and reproductive processes are all modified. Understanding these adaptations is crucial for developing sustainable food production systems for long-duration space missions.
Study examining orchestrating rapid long-distance signaling in plants with ca2+. Plant growth and development were significantly altered in microgravity conditions. Root gravitropism was disrupted with random directional growth. Phototropic responses remained functional but were enhanced. Gene expression patterns differed substantially from ground controls. Cell wall synthesis and structure were modified. Flowering time and reproductive success varied among species tested.